

Date Planned : / /	Daily Tutorial Sheet - 16	Expected Duration: 90 Min
Actual Date of Attempt ://	Level - 3 🕟	Exact Duration :

174. If
$$\Delta(x) = \begin{vmatrix} \alpha + x & \theta + x & \lambda + x \\ \beta + x & \phi + x & \mu + x \\ \gamma + x & \psi + x & V + x \end{vmatrix}$$
, show that $\Delta''(x) = 0$ and $\Delta(x) = \Delta(0) + Sx$, where S denotes the sum of all

the cofactors of all elements in $\Delta(0)$ and dash denotes the derivative with respect to x.

- 175. Find the characteristic roots of the two rowed orthogonal matrix $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ and verify that they are of unit modulus.
- **176.** Prove that the product of the characteristic roots of a square matrix of order *n* is equal to the determinant of the matrix.
- 177. If A is nonsingular, prove that the eigen values of A^{-1} are the reciprocals of the eigen value of A.
- 178. If α is a characteristic root of a nonsingular matrix, then prove that $|A/\alpha|$ is a characteristic root of adj A.
- 179. If one of the eigen values of a square matrix A order of 3×3 is zero, then prove that det A = 0.